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Speaker
The development of innovative designs for
floating wind structures, although based on their
——— previous experience, is moving beyond the
= — : conventional oil and gas substructures that %
e — initially shaped the floater designs.
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Ra ti O n a I e f h I S a S S e S S m e nt '?’E:‘-::tizess in the first generation of floating

e substructures has demonstrated the technical
e " feasibility of floating offshore wind.
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Speaker

After floating offshore wind has demonstrated its

technical feasibility, the second generation of
e — ' new substructure designs is focused on
- e achieving economic viability. This combines an
—————————————— increase in wind turbine capacity and dimensions
with an optimization of materials and
manufacturing costs. Both factors result in the
inherent flexibility of the substructure becoming
more and more pronounced.

Dynamic modelling of HiveWind floating
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Rationale for this assessment

Load calculation: current situation.

Speaker !
In order to make a proper design of these i
structures, it is essential to obtain their loads
and dynamic results in multiple simulations.
Up until recently, time domain-focused
design load case (DLC) analysis using aero-
hydro-servo-elastic simulations of floating
wind turbines involved modelling of rotor
blades, drive train, tower flexibility, and
mooring dynamics, but the substructure is
considered as a rigid body. Due to this
limitation, it is not possible to analyze the
loads within the substructure for a
statistically reasonable number of cases, and
additionally, it can lead to a distortion in the
stresses obtained for elements coupled to

the main substructure. The latter can be, for
example, the transition piece with the tower,
and the fairleads with the moorings. This
situation, which may be tolerable for a wind
turbine developer, is not suitable for a floater
developer, as it does not allow the structural
loads within a platform to be analyzed.

(Image from z
https://www.researchgate. net/publlcatlon/27
4585664_Shake_Table_Testing_of_a_Utility-

Scale Wind _Turbine) Dynamic modelling of HiveWind floating

se sener
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Load calculation: current situation.

Speaker
In order to make a proper design of these

structures, it is essential to obtain their loads

and dynamic results in multiple simulations.
Up until recently, time domain-focused
design load case (DLC) analysis using aero-
hydro-servo-elastic simulations of floating
wind turbines involved modelling of rotor
blades, drive train, tower flexibility, and
mooring dynamics, but the substructure is
considered as a rigid body. Due to this
limitation, it is not possible to analyze the
loads within the substructure for a
statistically reasonable number of cases, and
additionally, it can lead to a distortion in the
stresses obtained for elements coupled to
the main substructure. The latter can be, for
example, the transition piece with the tower,
and the fairleads with the moorings. This
situation, which may be tolerable for a wind

turbine developer, is not suitable for a floater

developer, as it does not allow the structural
loads within a platform to be analyzed.
(Image from

https://www.researchgate.net/publication/27

4585664_Shake_Table_Testing_of_a_Utility-
Scale_Wind_Turbine)
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Ra ti O n a I e fo r t h i S a S S e SS m e nt ggiscsv':’re developers are making efforts to address this limitation. For

example, there are more refined solvers available that couple
B advanced FEM and hydrodynamic analysis, in time domain
— e simulations. Unfortunately, these solutions are expensive and

- —

e — computationally intensive, therefore can only be used in a limited set
of cases. (Images from
https://Fenix.tecnico.ulisboa.pt/downloadFile/1970719973966791/Ext

LOa d Ca | C U |ati O n : F E M . endedAbstract_75925_DIASDiogo.pdf)
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Rati O n a I e fo r t h i S a Sse SS m e nt Isfpifev';irld be possible, another approach would be to make available

a solver that combines an optimized simplified modelling
implementation of the structural response of the substructure, fed by
: e ——— - a disaggregated analysis of the hydrodynamic loads. This allows the
——————————————— hundreds of thousands of simulation hours required by the
regulations for substructure certification to be run in reasonable time
with available computational resources. The result would be a global

Loa d Ca | C u |ati O n : D LC. analysis of good statistical quality, which would allow a FEM solver to

fine-tune the design through local analysis of the loads. (Image from
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Rationale for this assessment

Load calculation: OpenFAST vA4.

H

Speaker

Previous focus is possible: NREL has developed OpenFAST v4, which
takes a leap forward by including a linear finite element model, a modal
reduction of the dynamic system using the Craig-Bampton method,
together with a static improvement method for the substructure. This
allows to simplify the number of DOF of the FEM analysis of the platform, ==
maintaining the fundamental response modes of the structure, with a

proportionally low simulation time. In addition, OpenFAST includes a
weakly non-linear hydrodynamic model, capable of assigning various
hydrodynamic loads to each member of the structure separately.

SubDyn Upgrades

« Eliminated need for seabed reaction

+ Added pretensioned cable elements

+ Added rigid-link elements

+ Added pin, universal, & ball joints

» Solved elastic modes in floating reference frame

External lied Wind Turbi : s
Conditions l ‘T_‘;‘;d'; e Added moments from applied loads & gravity in
| the deflected state
InflowWind l AeroDyn T
£
| I
l //Scrquyn
I
e 4 J-""""_r" ElastoDyn
k3 ydroDyn
—
Sub )

MAP++, MoorDyn,
or FEAMooring

ydroDyn Upgrades
Updated buoyancy calculation in strip-
theory (small volume) members to
depend on displacement

+ Added support for multiple potential-flow

(large-volume) bodies

Dynamic modelling of HiveWind floating
wind substructure in OpenFAST

Glue Code Upgrades

= Added coupling between SubDyn and
mooring modules

+ Added support for full-system
linearization of SubDyn, new HydroDyn
features, & module coupling
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|

NAWEA/WindTech 2024

RUTGERS-NEW BRUNSWICK

11

Transforming ENERGM



Rationale for this assessment
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HydroDyn Upgrades

* Updated buoyancy calculation in strip-
theory (small volume) members fo

depend on displacement

= Added support for multiple potential-flow

(large-volume) bodies
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SubDyn Upgrades

* Eliminated need for seabed reaction
= Added pretensioned cable elements

= Added rigid-link elements

= Added pin, universal, & ball joints
- Solved elastic modes in floating reference frame
+ Added moments from applied loads & gravity in

the deflected state

Glue Code Upgrades

mooring modules

= Added support for full-system
linearization of SubDyn, new HydroDyn
features, & module coupling

= Added coupling between SubDyn and
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SubDyrl Upgrades

Eliminated need for seabed reaction
= Added pretensioned cable elements
= Added rigid-link elements

o o = Added pin, universal, & ball joints
- Solved elastic modes in floating reference frame
. I + Added moments from applied loads & gravity in
the deflected state
== =

Load calculation: OpenFAST v4.

Glue Code Upgrades

HydroDyn Upgrades Added coupling batween SubDyn and

Updated buoyancy calculation in strip-
theory (small volume) members fo
depend on displacement

= Added support for multiple potential-flow
(large-volume ) bodies

mooring modules

= Added support for full-system
linearization of SubDyn, new HydroDyn
features, & module coupling

Hyairid members
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Structure hydrodynamic nodes
Potential-flow solution Strlp-thenrv and hybrid members

LI

Dynamic modelling of HiveWind floating
wind substructure in OpenFAST
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SubDyn Upgrades
* Eliminated need for seabed reaction
= Added pretensioned cable elements
= Added rigid-link elements

= Added pin, universal, & ball joints

Rationale for this assessment = e

Glue Code Upgrades

HydroDyn Upgrades = Added coupling between SubDyn and
* Updated buayancy calculation in strip- mooring modules

theory (smal! volume) members to = Added support for full-system

depend on displacement linearization of SubDyn, new HydroDyn

= Added support for multiple potential-flow features, & module coupling
(large-volume ) bodies

.Strip thebry: Perform interpolation to obtain wave
kinematics at the displaced node positions.

(xrej"'yref} at (xj, Vi) "{,./’“ N

Dynamic modelling of HiveWind floating
wind substructure in OpenFAST
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Load calculation: OpenFAST v4.

Wheeler wave
stretching Free Surface

Still Water Level
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SubDyn Upgrades
* Eliminated need for seabed reaction

= Added pretensioned cable elements

= Added rigid-link elements

= Added pin, universal, & ball joints

- Solved elastic modes in floating reference frame
+ Added moments from applied loads & gravity in
the deflected state

Glue Code Upgrades

= Added coupling between SubDyn and
mooring modules

= Added support for full-system
linearization of SubDyn, new HydroDyn
features, & module coupling

HydroDyn Upgrades

* Updated buayancy calculation in strip-
theory (small volume) members to
depend on displacement

= Added support for multiple potential-flow
(large-volume) bodies
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Elements of a surface-
piercing member
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Rationale for this assessment

+ distributed model, with local structural loads, of the HiveWind platform.

¥¢ sener

Dynamic modelling of HiveWind floating
wind substructure in OpenFAST
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Speaker
With the support and collaboration of NREL, SENER has developed a

This platform has an innovative design, with a reduced construction cost

and manufacturing time, optimized to be a stable support for large
turbines, and which will be tested at full scale.
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Speaker
With the support and collaboration of NREL, SENER has developed a
distributed model, with local structural loads, of the HiveWind platform.
This platform has an innovative design, with a reduced construction cost

and manufacturing time, optimized to be a stable support for large
turbines, and which will be tested at full scale.
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. . Speaker
Ra tl O n a I e fo r th I S a SS e SS m e nt With the support and collaboration of NREL, SENER has developed a
et - w  distributed model, with local structural loads, of the HiveWind platform.
—— — This platform has an innovative design, with a reduced construction cost
— = - and manufacturing time, optimized to be a stable support for large
turbines, and which will be tested at full scale.
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Model description

.
e e

Loads
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Model description

Loads
Structure
internal
loads
32 sener Dynamic modelling of HiveWind floating . i A ﬂ il N R E L
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Speaker
The structural modelling of the floater is implemented in the OpenFAST
SubDyn module, in the form of Timoshenko beams of circular section
with a frustum shape. All the main structure parts are included, as
columns, bracings, heave plates, ballast water and contingencies. To
achieve the structural properties in each element that mimics the real
properties of the HiveWind members, an adjustment has been made to

the diameter, thickness, elasticity and density of the material used to
define them.
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Speaker
The structural modelling of the floater is implemented in the OpenFAST
SubDyn module, in the form of Timoshenko beams of circular section
with a frustum shape. All the main structure parts are included, as
columns, bracings, heave plates, ballast water and contingencies. To
achieve the structural properties in each element that mimics the real
properties of the HiveWind members, an adjustment has been made to

the diameter, thickness, elasticity and density of the material used to
define them.
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Speaker
The structural modelling of the floater is implemented in the OpenFAST
SubDyn module, in the form of Timoshenko beams of circular section
with a frustum shape. All the main structure parts are included, as
columns, bracings, heave plates, ballast water and contingencies. To
achieve the structural properties in each element that mimics the real
properties of the HiveWind members, an adjustment has been made to

the diameter, thickness, elasticity and density of the material used to
define them.

Transforming ENERGM
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Speaker
With this definition, analyses of the platform’s first natural frequencies
have been carried out on the dry platform. Here are shown the modes
comparing OpenFAST and ANSYS.

les

e See———
_—

Dynamic modelling of HiveWind floating =
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Speaker
Comparing the results, SubDyn optimised model gets an error of 4 % or
less in the bending modes with respect to the calculations carried out in
ANSYS Mechanical.

===

Structure free-free boundary condition: SubDyn vs FEM.

Verification.

Model Flexible | Model
Error Modes Error
Totalmass | t | 0.0% 1 2.0%

X m -0.1%
2 3.8%

CDG | Y m 0.0%
Z m |-0.2% 3 -4.4%
Ixx tm2 | -0.1% 4 0.4%

lyy t-m2 | 0.5%
Izz t-m2 | 0.0% 5 1.9%

Dynamic modelling of HiveWind floating .
wind substructure in OpenFAST = ERQEA/\_?wndTé&fa 2024
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Model description

Speaker

The hydrodynamic modelling set by HydroDyn adopts a hybrid strip-theory model with a distributed potential flow
model at each of the bracings and columns of the substructure. This is achieved because OpenFAST can handle multiple
potential flow bodies. In this model, the strip theory elements circular frustum properties have been adjusted so that
the hydrodynamic properties like buoyancy, hydrostatic stiffness, centre of gravity, and inertia matrix, are similar to
those of the real device. On the other hand, the drag coefficients of the Morison elements have been calibrated on the

Hydrodynamics: HydroDyn
Rigid vs distributed.

basis of experimental tests carried out in the IHCantabria laboratory. Wave stretching is used to capture the kinematics
of the wave up to the instantaneous free surface. MacCamy-Fuchs inertial load correction has been applied to the
vertical elements (the columns). Another factor that increases the accuracy of OpenFAST is that it calculates all the
hydrodynamics considering the instantaneous position of the body.

To apply the rest of the hydrodynamic coefficients to the platform, the incident, radiation and diffraction potentials have
been analysed in each of the thousands of panels of the submerged mesh, obtaining the contribution of each of them
for the added mass, radiation and diffraction. To obtain this information with this level of breakdown by potential and
by grid cell, the Capytaine solver has been used. This information has been transferred to each component of the
structure from each grid cell using a simple to use automated process, obtaining a potential-flow body for each
independent substructure component.

. Potential flow theory . . Potential flow theory .
Physics (linear) Strip theory Physics (linear) Strip theory
Viscous None Morison Viscous None Morison
Damping Damping
Linear radiation Frequer)cy{ dependant None Linear radiation Frequer?cy'dependant None
radiation (x1) radiation (x6)
Second order Frequency dependant (x1) None Second order Frequency dependant (x6) None
Wheeler wave Wheeler wave
Wave Froude-Krylov Frequency dependant (x1) stretching Wave Froude-Krylov Frequency dependant e
excitation excitation
amel inamiie Diffraction scattering Frequency dependant (x1) None amdl inamiie Diffraction scattering Frequency dependant (x6) None
Constant added Constant added
Added mass Frequency dependant (x1) mass coefficient Added mass Frequency dependant (x6) mass coefficient
Hydrostatic restoring Linear (x1) Distributed Hydrostatic restoring Linear Distributed
Buoyancy Submerged volume Distributed Buoyancy Submerged volume Distributed
Inertia Centre (?f gra‘wty, mass and Distributed Inertia Centre of .gravr'cy, mass and Distributed
inertia (x1) inertia
Rigid Flexible
. . . . . - AR
5@ Dynamic modelling of HiveWind floating .
s= Sener 26
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Hydrodynamics: HydroDyn. Strip theory.
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Model descript
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Model description
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Model description
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Model description

Rigid vs Flexible: Free decays.
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Speaker
Once the flexible model has been defined, its general behaviour has
been found to be similar to that of the rigid structure under reduced
loads.
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Model description

Rigid vs Flexible: RAO.
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Speaker
Re S u Its With the structural and hydrodynamic model validated, it is possible to

obtain the vibration modes of the wind turbine-substructure system,

). 7

—

e ———

— e ————
e ———

SubDyn: Dry modes platform and tower

Dynamic modelling of HiveWind floating i
wind substructure in OpenFAST
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Speaker

Re S u Its With the structural and hydrodynamic model validated, it is possible to
obtain the vibration modes of the wind turbine-substructure system,

model).

dinl | &

Dynamic modelling of HiveWind floating
wind substructure in OpenFAST
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Speaker

03 Re S u Its With the structural and hydrodynamic model validated, it is possible to

| obtain the vibration modes of the wind turbine-substructure system,

). 7
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Speaker
Re S u Its With the structural and hydrodynamic model validated, it is possible to

obtain the vibration modes of the wind turbine-substructure system,

). 7

—

e ———

— e ————
e ———

SubDyn: Dry modes platform and tower
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Speaker

Re S u ItS In order to compare the results of the classical with the advanced model,
a list of representative ULS and FLS cases has been defined for the
location of Tramuntana (Spain). The models include the IEA 15 MW
turbine.

——

Rigid vs flexible: Set of comparison DLC.

e ULS (Ultimate Limit State)
12 worst cases.

Tramuntana

* FLS (Fatigue Limit State)
88 worst cases causing
45% of tower base damage.

IEA 15 MW turbine.
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Speaker

Re S u ItS The results of the one-hour simulations show a slight reduction in the
loads on the moorings, and a significant increase in the average and

especially the maximum values of the tower base loads and the platform

inclination.

Ratio to the maximum Maximum: Increment from rigid o Aexible
I Case Type FAIRTEN1| PrimTitt [TwrBsBend| NacAccel [FAIRTEN1| PrmTilt [TwrBsBend NacAccel
U LS AV I V Rigid || 088 05 056 0.8
0 : Al — 40. 50.6%|  27.1%
¢ €ra g € Values Flexible 079 o084 o4 i £
ey il e 039 03 6| 1ars|  soox| sosm
Flexible 0.75 0.66 0.72 0.75
., |Rigid 0.76 0.43 0.49 0.46 el o as
Flexible 0.79 0.57 0.59 0.66
Rigid 0.75 0.50 0.61 0.61 ) |
3 - - 1.4%] 3652 13.8% I7.5%
NacAccel Flexible 0.76)  0.68 081 0.8 3k
" Rigld 0.78 0.52 0.45 0.45 o ' |
Flexibie 0.76 0.66| ~ 0.89 j
T = S LU |
Flexible ; 0.82 |
Rigid 0.49 -
fi : 6.
Flexible 0.75 i
5 |Rigid 0.48] o
Flexible 0.68
Rigid 0.52
8 . 1.7%
Flexible 0.85
Rigid 0.49 —_
9 7.3%
Flesible 86| 0.74
TwrBsBend o |Riaid 0.65 0.72 0.76 =
. PtfmTilt Flexible 0.66 '
y |Rigid 0.73 0.73 (= 0. 0,55 S
Flexible 0.74 —r '
FairTen1 Cribedn e e
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To see the detail of this increase, some graphs are shown. While for
energy, damping the loads.
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Speaker
Re S u Its To see the detail of this increase, some graphs are shown. While for

some parameters flexibility may amplify the movements, thus increasing
loads and displacements, for moorings flexibility can absorb part of the
energy, damping the loads.

ﬁ
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Results

energy, damping the loads.

Tower Base Bending Moment

To see the detail of this increase, some graphs are shown. While for
some parameters flexibility may amplify the movements, thus increasing
loads and displacements, for moorings flexibility can absorb part of the
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Speaker
Fatigue calculations procedure: Firstly, for the tower base bending moment, the ranges and

means associated are obtained using a Rainflow counting algorithm. Next, those are represented
8 in a Markov Matrix, where the table columns are the range interval and the rows the mean
~ interval. Each cycle obtained with the Rainflow counting is introduced in the corresponding cell of ==
the matrix, applying the case occurrence probability and the design life duration (25 years). With ==
the defined Markov Matrix, the DEL value is obtained, with a Wohler coefficient of 4. The cases
analyzed for fatigue are the ones included in DLC 1.2 and 6.4, being a sum of 88 simulations,

F LS summing the 45% of the damage.

Considering a series of cases that add up to 45% of the total fatigue,
the damage produced by the flexible model in the tower base is
8.3% higher than that obtained with the rigid model.
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Results

This model allows to study the loads on the internal elements of
the structure, thus performing the necessary FLS and ULS
analyses. This makes it possible to check the relationships
between different loads at any given moment. In this way, the
designer is provided with critical information on the internal

behaviour of the structure.

[

Loads at internal substructure locations.

Tower - bracing

Moments at tower base and tower-bracing joint

Parlialdad [kN-m|

Tower base
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The simulation of the load cases is usually done by considering the substructure to be rigid. This approach may be too
simplified for the latest generation of offshore wind platforms. Nowadays, solvers such as OpenFAST allow, in an efficient
way, to analyse these cases considering the flexibility of the structure. The results indicate non-negligible differences in

. critical parameters. In addition, information is obtained on the critical areas at internal joints of the structure, allowingto ==
e —----—-""""""” calculate ULS and FLS in any point of the structure accounting for concomitant aero-hydro-elasto-servo loads. Thus,

— p— thanks to this improved information, the flexibility modelling will allow for tighter and more economical designs.

« Current modelling considers floating substructures as rigid.

/]

* Latest offshore wind platforms are leaner, less rigid.

« OpenFAST now considers the flexibility of the floating
substructure.

* Flexible model has non-negligible differences in KPI.

e It allows to calculate ULS and FLS inside the substructure
accounting for concomitant aero-hydro-elasto-servo loads.

* This will allow for tighter and more economlcal deS|gns

ol | Bl JoTE
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